機械学習

leafmapの解説

Leafmapは、Jupyter notebook環境でローコードでインタラクティブなマッピングと地理空間分析を行うための無料でオープンソースのPythonパッケージです。目次:leafmapとは、主な機能、環境準備、実験

KDDCUP 2020 Debiasing概要

KDDCUP 2020 Debiasingは国際学術会議でレコメンデーションシステムの問題です。目次: 背景と目的、スケジュール、評価方法、賞金、データ、ランキング

SPP-net(Spatial pyramid pooling)層の解説

SPP-netとは、可変サイズの画像を入力出来ように分類とオブジェクト検出のニューラルネットワークです。SPP-netは最後の畳み込み層の上にSPP層を追加する事が多いです。目次: SPP-netとは | 実験 | モデル評価

manifold.trustworthinessの解説

manifoldのtrustworthinessとは、多次元空間で二つのデータは似ているかどうか判断のモジュールです。目:manifoldの概要 | trustworthiness | 実験

librosa-Pythonで音声処理, 音楽解析

librosaは音楽・オーディオの処理と解析ためのPythonパッケージです。librosaの実験 | 音声ロード | 音楽情報検索 | beat tracker | 音声の可視化 | harmonic-percussive | スペクトログラム

Matplotlibでの積み上げ棒グラフ

Matplotlib での積み上げ棒グラフを作成する方法について解説します。積み上げ縦棒グラフ | 積み上げ縦棒グラフ (割合) |積み上げ棒グラフ |積み上げ横棒グラフ (割合)

mlxtendの可視化

mlxtendの可視化の紹介と実験です。主成分分析(PCA Correlation)|学習曲線(Learning Curve)|混同行列(Confusion Matrix)|決定境界(Decision Regions)|線形回帰(Linear Regression)

TensorFlowの公平性指標(Fairness Indicators)

目次 1. TensorFlowのFairness Indicators 1.1 公平性指標(Fairness Indicators)とは 1.2 Fairness IndicatorsのAPI 2. 実験 2.1 環境構築 2.2 データセット 2.3 公平性指標 関連記事: 機械学習モデルを解釈するSHAP eli5でモデルの解釈   1. TensorFlowのFairness Indicators 1.1 公平性指標(Fairness Indicators)とは Fairness Indicators はTensorFlow Model Analysis (TFMA)のパッケージにあり、公平性メトリックの計算するライブラリです。既存のツールの多くは、大規模なデータセットやモデルではうまく機能しません。しかしTensorflowのFairness Indicatorsでは、10億ユーザーのシステムで動作できるツールで大規模に強いのが特徴です。 公平性指標でやることは、 データセットの分布 定義されたユーザーグループ間のモデルのパフォーマンスを評価 個々のスライスを深く掘り下げて、根本的な原因で改善 です。 1.2 Fairness IndicatorsのAPI パッケージ: Tensorflowデータ検証(TFDV) Tensorflowモデル分析(TFMA)公平性指標 What-Ifツール(WIT) 資料https://www.tensorflow.org/tfx/guide/fairness_indicators#render_fairness_indicators GitHub: https://github.com/tensorflow/fairness-indicators   2. 実験 環境:Google Colab …

TensorFlowの公平性指標(Fairness Indicators) Read More »