機械学習

ランダムフォレスト(分類分析)

ランダムフォレスト(Random Forest)とは   ランダムフォレスト(Random Forest)とは、分類や回帰に使える機械学習の手法です。前回までのリッジ回帰・ラッソ回帰は回帰問題つまり数値を予測する時にしか用いられません。これは最も柔軟で使いやすいアルゴリズムの1つです。 ランダムフォレストはランダムに選択されたデータサンプルによって決定木を作成し、各ツリーから予測を取得し、投票によって最良の解決策を選択します。例えばですが、決定木を5つ作り、5つのうち3つがA、2つがBならばAを選択します。また回帰問題の時は、5つが [10,12,8,4,14]と予測すれば、その平均値9.6、中央値10で予測します。   ランダムフォレストには、レコメンドエンジン、画像分類、機能選択など、さまざまな応用例があります。 というのも精度が非常に高く、評判の良いアルゴリズムになります。   アルゴリズムの4つのステップ 1.与えられたデータセットからランダムサンプルを選択する。 2.各サンプルの決定木を構築し、各決定木から予測結果を得る。 3.予測結果ごとに投票を行います。 4.最終的な予測として最も多くの票を有する予測結果を選択する。   特所 ランダムフォレストは、各決定木の特徴が異なり、複雑な意思決定ができます。 決定木と比較すると過剰適合(オーバーフィッティング 過去記事のリンク)の問題はありません。 主な理由は、すべての予測の平均をとることで、バイアスを相殺します。 ランダムフォレストは欠損値も処理できます。 これらを処理するには、中間値を使用して連続変数を置き換え、欠損値の近接加重平均を計算する2つの方法があります。 重要度を得ることができます。これは、分類子に最も寄与する特徴を選択するのに役立ちます。   短所 ランダムフォレストは、複数の決定木があるため予測の生成が遅い。 予測を行うたびに、フォレスト内のすべてのツリーは、同じ入力に対して予測を行い、その上で投票を実行する必要があります。 このプロセス全体は時間がかかります。 決定木と比較して、モデルは解釈が難しくなっています。なぜならば、複数の木が存在するためです。   Scikit-learnのランダムフォレストのpython   #ライブラリーのインポート from sklearn import datasets #Irisデータロード iris = datasets.load_iris() import pandas as pd data=pd.DataFrame({     ‘sepal length’:iris.data[:,0],     ‘sepal width’:iris.data[:,1],     ‘petal length’:iris.data[:,2], …

ランダムフォレスト(分類分析) Read More »

正則化のLasso回帰とRidge回帰

前回は線形回帰とロジスティック回帰を説明しました。この記事では、正則化したLasso回帰とRidge回帰をお話になります。 回帰モデルで過学習を防ぐ方法の1つとして、誤差関数(二乗誤差関数など)に次の式で表される正則化項を加えて最小化します。正則化項を用いる回帰をリッジ回帰と呼びます。 正則化項を加えるメリットは以下になります。1.変数が多い時に発生する過学習を抑える事が出来る。2.相関があるような変数の影響を抑える事が出来る(但し一致性は保証されない)。3.相関の高い変数群がある場合、Lasso/Ridgeはその中の1つしか変数として選択できない。4.係数が小さくなる。 Ridge回帰 Ridge回帰では、L2正則化を用いています。L2ノルム(係数のユークリッド長)に対してペナルティを与えます。alpha値を設定することにより、係数への制約を調整できます。 pythonでRidge回帰を作成しましょう。先ず、ライブラリーのインポートとデータセットを作成します。 import matplotlib.pyplot as plt import numpy as np from sklearn.cross_validation import train_test_split from sklearn.datasets import make_regression from sklearn.linear_model import Ridge from sklearn.metrics import mean_squared_error # サンプルデータ作成 1000サンプル、300 特徴量 X, y, w = make_regression(n_samples=1000, n_features=300, coef=True,                           random_state=1, bias=3.5, noise=35)   モデル作成し、test scoreを計算します。 alphas = 0.1, 1,5, 10, 100   # 学習 テスト 分ける X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3,random_state=3)   clf …

正則化のLasso回帰とRidge回帰 Read More »