Python-OpenCVでのRGBからHSVに変換
画像解析一覧 画像解析では、画像の色空間を変換することは一般的な操作になります。OpenCVは150種類以上の色空間の変換を用意しているが,その中で最も広く使われている変換方法は、BGR からGrayに変換とBGRから HSVに変換であります。今回の記事はBGRから HSVに変換する方法を解説します。 目次 1. 色空間とは 1.1 RGB色空間モデル 1.2 HSV色空間モデル 2. RGBからHSVに変換の換算式 3. PythonのOpenCVコード:RGBからHSVに変換 3.1データロード 3.2 RGBの画像を可視化 3.3 HSVに変換 3.4 HSVの画像を可視化 1. 色空間とは 色空間(カラースペース)とは色を定量的に表現方法です。代表的な色空間にはRGBがあるが、これは、赤(Red)、緑(Green)、青(Blue)の光の3原色を利用した色空間であり、コンピュータのモニタへの出力や、アプリケーション上の色設定などでよく用いられます。他には、テレビで用いられているYCbCr/YPbPr、印刷分野で主流であるCMYKやDICなどがあります。 1.1 RGB色空間モデル コンピュータやテレビの映像表示に使われるディスプレイでは、色を区別する方法として RGB モデル(RGB model)が広く使われています。それに合わせて、Webサイトを制作する際に色を指定する場合にも RGB にもとづく色表記が使われます。赤(red)、緑(green)、青(blue)の 3 つであり、これらを総称して原色(primary colors)と呼びます。それぞれの要素の明度を最小の 0 から最大の 255 の間に置きます。すべての原色が混ざると白(white)になります。他方で、すべての原色が欠けると黒(black)になります。 1.2 HSV色空間モデル HSV モデル(HSV model)とは、色相(hue)・明度(lightness)・彩度(saturation)の 3 つの基準から色を分類するモデルです。HSV モデルにおいて使われる 3 つの基準を総称して色の三属性(three attributes of color)と呼びます。HSV モデルは人間が色を知覚する方法と似ていることからデザイナーの間で広く使われています。 …