TensorFlow

SPOCUの活性化関数

目次 1. SPOCU活性化関数の概要 1.1 SPOCU活性化関数とは 1.2 SPOCU関数 2. 実験 2.1 ライブラリインポート 2.2 データ読み込み 2.3 データ加工 2.4 SPOCUの活性化関数を作成 2.5 Reluの活性化関数を作成 2.6 まとめ 関連記事:活性化関数のまとめ   1. SPOCU活性化関数の概要 1.1 SPOCU活性化関数とは SPOCU活性化関数とは scaled polynomial constant unit activationの略称であり、物理学をベースとしているパーコレーションベースの活性化関数です。統計物理学と数学のパーコレーション理論は、スポンジのような媒質に水がしみこむ現象のモデルとして言われています。それ以外にも、パーコレーション理論とモンテカルロシミュレーションの組み合わせる事によって、ハードウェアのアモルファスシステムでのイオン移動と電子伝達をシュミレートできると言われています。 SPOCU活性化関数は、ウィスコンシン診断乳がん(WDBC)データセットや大規模データセットMNISTなど、大規模データセットと小規模データセットの両方でSPOCUの検証に成功しました。 SPOCUの論文 https://link.springer.com/article/10.1007/s00521-020-05182-1 1.2 SPOCU関数 ライブラリのインストール python3 -m pip install spocu Tensorflow from spocu.spocu_tensorflow import SPOCU   alpha = 3.0937 beta = 0.6653 …

SPOCUの活性化関数 Read More »

COCOBの最適化アルゴリズム

  目次 1 . COCOB最適化アルゴリズムの概要 1.1 COCOB最適化アルゴリズムとは 1.2 COCOB定義 2. 実験 2.1 データロード 2.2 データ前処理 2.3 COCOB最適化アルゴリズムのモデル作成 2.4 Adam最適化アルゴリズムのモデル作成 2.5 まとめ   記事:最適化アルゴリズムのまとめ   1.  COCOB最適化アルゴリズムの概要 1.1 COCOB最適化アルゴリズムとは COCOB最適化アルゴリズムはCOntinuous COin Betting (COCOB)の略称で学習率が要らない最適化アルゴリズムです。学習率を適応させたり、目的関数の想定された曲率を使用したりすることはありません。最適化プロセスをコイントスゲームにします。   コイントスゲーム ギャンブラーは初期金額から始まります。各ラウンドtで、彼はコイントスゲームの結果に賭けます。ギャンブラーは、表(ヘッド)または裏(​テイル)のいずれかに任意の金額を賭けることができます。 しかし、彼は追加のお金を借りることは許されていません。 彼が負けた場合、彼は賭けた金額を失います。 彼が勝った場合、彼は賭けた金額を取り戻し、それに加えて、彼は報酬と同じ金額を受け取ります。ラウンドt終了時のギャンブラーの富と、ギャンブラーの報酬にします。 上記のギャンブルアルゴリズムを使用して、劣勾配にアクセスすることにより、滑らかでない目的関数の最小化を見つけました。 COCOBは0から始まり、時間の経過とともに指数関数的に増加します 反対の符号の勾配に達するまで、wtを繰り返します。 ギャンブルの観点からは、これは明らかです。同じ結果のシーケンスがあるため、富は指数関数的に増加し、それによって富が増加し、賭けが増加します。   論文:https://arxiv.org/abs/1705.07795 Tensorflow: https://www.tensorflow.org/addons/api_docs/python/tfa/optimizers/COCOB   2. 実験 データセット:cifar10: 60000枚の32ピクセルx32ピクセルの画像。10クラス([0] airplane (飛行機)、[1] automobile (自動車)、[2] bird …

COCOBの最適化アルゴリズム Read More »

Snakeの活性化関数

目次 1. Snake活性化関数の概要 1.1 Snake活性化関数とは 1.2 Snake関数 2. 実験 2.1 ライブラリインポート 2.2 データ読み込み 2.3 データ加工 2.4 Snakeの活性化関数を作成 2.5 LSTMの活性化関数を作成 2.6 まとめ 関連記事:活性化関数のまとめ   1. Snake活性化関数の概要 1.1 Snake活性化関数とは Snakeの活性化関数は、単純な周期関数の外挿を学習できないLSTMに用います。通常の活性化関数であるtanh、sigmoid、reluの弱点を改善するために使用します。LSTMベースのアクティベーションの優れた最適化特性を維持しながら、周期関数を学習するために必要な周期的誘導バイアスを実現する新しいアクティベーション、つまりx + sin2(x)のような学習が難しいタイプで用いられます。   tfa.activations.snake( x: tfa.types.TensorLike, frequency: tfa.types.Number = 1 ) -> tf.Tensor 論文:Neural Networks Fail to Learn Periodic Functions and How to Fix It https://arxiv.org/abs/2006.08195 TensorFlow: …

Snakeの活性化関数 Read More »

TanhExpの活性化関数

  目次 1. TanhExp活性化関数の概要 1.1 TanhExp活性化関数とは 1.2 TanhExp関数 2. 実験 2.1 ライブラリインポート 2.2 データ読み込み 2.3 データ加工 2.4 TanhExpの活性化関数を作成 2.5 Reluの活性化関数を作成 2.6 まとめ   記事:活性化関数のまとめ   1. TanhExp活性化関数の概要 1.1 TanhExp活性化関数とは TanhExpはTanh Exponential Activation Functionの略称です。名前からわかるようにtanhとexpを使います。TanhExpの定義はf(x) = x tanh(e^x)である。様々なデータセットやネットワークモデルに対してTanhExpのシンプルさ、効率性、ロバスト性を実証し、TanhExpは収束速度と精度の両方で同等のものを凌駕することを示した。また、ノイズを追加したり、データセットを変更したりしても、TanhExpの挙動は安定している。ネットワークのサイズを大きくしなくても、少数の学習エポックと余分なパラメータを追加することなく、TanhExpによって軽量ニューラルネットワークの能力を向上させることができることを示す。 論文:TanhExp: A Smooth Activation Function with High Convergence Speed for Lightweight Neural Networks https://arxiv.org/abs/2003.09855   1.2 TanhExp関数 def tanhexp(x): return x * tf.math.tanh(tf.math.exp(x)) …

TanhExpの活性化関数 Read More »

AdaDeltaの最適化アルゴリズム

  目次 1. AdaDelta最適化アルゴリズムの概要 1.1 AdaDelta最適化アルゴリズムとは 1.2 AdaDelta関数 2. 実験 2.1 ライブラリインポート 2.2 データ読み込み 2.3 データ加工 2.4 AdaDeltaの最適化アルゴリズムを作成 2.3 Adamの最適化アルゴリズムを作成 2.5 まとめ   記事:最適化アルゴリズムのまとめ   1. AdaDelta最適化アルゴリズムの概要 1.1 AdaDelta最適化アルゴリズムとは   AdadeltaはAdagradの拡張版の最適化アルゴリズムです。 過去のすべての勾配を累積するのではなく、勾配更新の固定移動ウィンドウに基づいて、単調に減少する学習率を下げていくような最適化アルゴリズムです。複数の値を保持するのではないのでAdagradに比べるとメモリー効率も良いと言われています。   ADAGRADメソッドでは、分母はトレーニングの開始から始まる各反復からの二乗勾配を累積します。 各項が正であるため、この累積合計はトレーニング全体を通じて増加し続け、各次元の学習率を効果的に縮小します。 何度もイテレーションの繰り返した後、学習率は非常に小さくなります。   下記の計算式になります。注意点としてはステップ5で差分を取っています。これは、無次元かと呼ばれる操作で学習していきます。この無次元かと呼ばれる特徴を用いているため、他のステップでも学習率を設定しないアルゴリズムです。 論文:ADADELTA: An Adaptive Learning Rate Method https://arxiv.org/abs/1212.5701   1.2 AdaDelta関数   Tensorflow tf.keras.optimizers.Adadelta( learning_rate=0.001, rho=0.95, epsilon=1e-07, name=’Adadelta’, …

AdaDeltaの最適化アルゴリズム Read More »

TensorFlowでのレコメンダー【tensorflow-recommenders (TFRS)】

2020年9月23日GoogleはTensorFlow Recommenders (TFRS)のレコメンデーション システムのパッケージを発表しました。この記事は、TensorFlowレコメンダーのパッケージを紹介したいと思います。 目次 1. TensorFlowのレコメンダーとは 2. tensorflow-recommendersの特徴 3. 実験 _3.1 データロード _3.2 レコメンデーションモデルの定義 _3.3 モデル評価の関数 _3.4 モデル学習 _3.5 モデル評価 1. TensorFlowのレコメンダーとは TensorFlow Recommendationsは、TensorFlowを使用してレコメンダーシステムモデルを構築するためのオープンソースライブラリです。 これは、レコメンダーシステムを構築するための完全なワークフロー(データの準備、モデルの定式化、トレーニング、評価、および展開)に役立ちます。 Kerasに基づいて構築されており、複雑なモデルを構築する柔軟性を提供しながら、穏やかな学習曲線を持つことを目的としています。 2. tensorflow-recommendersの特徴 ・柔軟な候補者指名モデルを構築して評価します。 ・アイテム、ユーザー、およびコンテキスト情報を推奨モデルに自由に組み込みます。 ・複数の推奨目標を共同で最適化するマルチタスクモデルをトレーニングします。 ・TensorFlow Servingを使用する事が出来ます。 3. 実験 環境:Google Colab データセット:MovieLens 100Kデータセット TFRSをインポート pip install -q tensorflow-recommenders pip install -q –upgrade tensorflow-datasets ライブラリインポート import os import pprint …

TensorFlowでのレコメンダー【tensorflow-recommenders (TFRS)】 Read More »

ニューラルネットワークのプルーニング(Pruning・枝刈り)

  関連記事:TensorFlow 2.0 主な変更点 今回の記事はTensorFlow モデル最適化ツールキットにあるPruning APIを解説と実験を行います。 目次 1.  ニューラルネットワークのプルーニングとは ___1.1 プルーニングの概要 ___1.2 TensorFlow モデル最適化ツールキット — Pruning API 2. 実験 ___2.1 環境構築 ___2.2 データのロード ___2.3 NNモデル ___2.4 プルーニングモデル ___2.5 モデルの評価 ___2.6 TensorFlow Liteでモデル圧縮 3. まとめ 1. ニューラルネットワークのプルーニング(枝刈り)とは 1.1 プルーニングの概要 ニューラルネットワークのプルーニングとは、機械学習アルゴリズムを最適化する方法の一つとして、ニューラル ネットワークのレイヤー間のつながり(パラメーター)を削除することです。これにより、パラメーターの数を減らして計算を高速化します。 実際には、ニューラル ネットワークのパラメーターの値をゼロにすることで、ニューラル ネットワークのレイヤー間の不要なつながりと見なしたものを削除します。この処理はトレーニング プロセスで行います。繋がりを消すもの以外に、重みを0にすることでプルーニング(枝刈り)とも言います。 1.2 TensorFlow モデル最適化ツールキット — Pruning API 重みのプルーニングを行う API は、Keras をベースに構築されています。そのため、このテクニックはどんな既存の Keras …

ニューラルネットワークのプルーニング(Pruning・枝刈り) Read More »

TensorFlow 2.0 主な変更点

前回、【深属学習】について色んな記事を話しました。 今回の記事はGoogleが2019年初に公開したTensorFlow 2.0について紹介します。 本番リリースではないですが、現在の時点TensorFlow 2.0 Betaです。   リリース日のタイムライン: 2019年3月4日 TensorFlow 2.0 Alphaのリリース 2019年6月日8 TensorFlow 2.0 Betaのリリース >  pip install tensorflow==2.0.0-beta0 本記事では、TensorFlow 2.0の変更点についてまとめたいと思います。 Google I/O’19のアナウンスとDesign Documentを参考しました。 TensorFlowのアナウンスにもある通り、TensorFlow 2.0における大きな変更点は以下の4つになります。 1.Eager Modeのデフォルト化 2.Sessionとplaceholder消滅 3.kerasが、TensorFlow標準の高レベルAPIに 4.TensorFlow 2.0の全体構成 1. Eager Modeのデフォルト化 eager executionはDefine-by-runの機能になります。Define by Runでは、計算グラフ(ニューラルネットの構造)の構築とデータを流しながら行います。Define and Runでは、計算グラフを構築してから、そこにデータを流していきます。 従来の tensorflow は Define-and-run で、 PyTorch やChainer は Define-by-run です。 eager execution は tensorflow で …

TensorFlow 2.0 主な変更点 Read More »

Pythonトップライブラリ2018

Pythonは、学習初期でも先人の作ったライブラリを利用することで、高速に開発が可能になります。 Pythonライブラリを管理する PyPi.org では、現在 100万以上のライブラリが公開され、現在も増加中です。 前回の記事は2018年の大人気のライブラリを紹介します。   年末でKdnuggetsがGithubの「星」と投稿者の人数とコメント数からトップ15のライブラリを発表しました。下記の図はGithubの「星」と投稿者の人数で表します。ては、ライブラリを軽いに紹介します。 1 – TensorFlow (投稿者 – 1757, コメント数 – 25756, 星 – 116765) Googleの機械学習/ディープラーニング/ネットワークライブラリです。柔軟なアーキテクチャにより、1つのAPIを使用してデスクトップ、サーバー、またはモバイルデバイスの1つ以上のCPUまたはGPUに計算を展開できます。またコードはやや書きにくいのが特徴になります。PyTorchおよびChainerの利点はDefine by Run(動的計算グラフ)と呼ばれる特徴です。Define by Runは入力データのサイズや次元数に合わせてニューラルネットワークの形や計算方法を変更することができます。       2 – pandas (投稿者  – 1360, コメント数 – 18441, 星 – 17388) 機械学習やディープラーニングの前処理のために、データの集計をするライブラリになります。数値や時系列のデータの操作や、データ構造をいじったりすることができます。また最近では、可視化も可能になってきています。     3 – scikit-learn (投稿者 – 1218, コメント数 – 23509, 星 – 32326) NumPy, SciPy や Matplotlib と互換性を持つように開発されてクラスタリングや回帰、分類器、次元圧縮、データの前処理をはじめとする、機械学習のアルゴリズムを幅広く実装しているライブラリです。   …

Pythonトップライブラリ2018 Read More »