OpenCVで顕著性検出(Saliency Detection)
関連記事: 画像解析 今回の記事はOpenCVに入っている顕著性(Saliency)について解説したいと思います。 目次 1. Saliency Detectionの概要 2. 実験・コード __2.1 データロード __2.2 サリエンシーディテクションの関数 __2.3. SpectralResidualの顕著性 __2.4. FineGrainedの顕著性 1. Saliency Detectionの概要 顕著性を検出するには多くの方法があります。 OpenCVでは、顕著性検出用に提供されているアルゴリズムは3つのカテゴリに分類されます。 Static saliency : 画像から検出するモジュールです。Motion saliency : 動画のフレームに依存するモジュールです。今回は static saliencyについて解説します。static saliencyのアルゴリズムは、画像の人が良く注目する部分を検出できるようにするさまざまな画像機能を使用します。 OpenCVには、スペクトル残差と細粒度の2つのアルゴリズムがすでに実装されています。 Spectral Residual このアルゴリズムは、入力画像の対数スペクトルを分析し、スペクトルドメイン内の画像のスペクトル残差を抽出し、プロトオブジェクトの位置を示唆する顕著性マップを構築する高速な方法が実装されています。 Fine Grained 人間の目の網膜は神経節細胞で構成されています。 神経節細胞には、オンセンターとオフセンターの2種類があります。 オンセンターは、暗い背景に囲まれた明るい領域に反応します。 オフセンターは、明るい背景に囲まれた暗い領域に反応します。 このアルゴリズムは、オンセンター(on-center )とオフセンター(off-center)の違いに基づいて顕著性を計算します。 opencv/opencv_contribのモジュール: cv2.saliency.StaticSaliencySpectralResidual_create() cv2.saliency.StaticSaliencyFineGrained_create() 2. 実験・コード 概要: 入力データ: ウィキペディアからの画像 環境:Google Colab GPU ライブラリ: OpenCV …