sktimeの時系列予測
目次 1. sktime 2. 実験: _2.1 環境構築 _2.2 データロード _2.3 モデル学習 _2.4 予測 _2.5 モデル評価 1. sktime Sktimeとはオープンソースのscikit-learns互換の時系列アルゴリズムのPythonライブラリです。時系列関連のタスクを使用した機械学習の統合インターフェースを提供します。これらのタスクは、次のような学習ベースのタスクと密接に関連しています。 時系列予測 時系列回帰 時系列分類 ディープラーニングについては、コンパニオンパッケージsktime-dlを参照してください。 https://github.com/sktime/sktime-dl 今回の記事は時系列分類を開設したいと思います。 2. 実験: 環境:Colab データセット:BasicMotions データセットは、4つのアクティビティのスマートウォッチから生成されます。 参加者は、ウォーキング、休憩、ランニング、バドミントンの動きを記録する必要がありました。 データは、10秒間、10分の1秒ごとに1回記録されます。 http://www.timeseriesclassification.com/description.php?Dataset=BasicMotions 2.1 環境構築 ライブラリをインストールします。 !pip install sktime ライブラリをインポートします。 import numpy as np from sklearn.model_selection import train_test_split from sklearn.pipeline import Pipeline from sktime.classification.compose import ( ColumnEnsembleClassifier, TimeSeriesForestClassifier, ) from sktime.classification.dictionary_based import BOSSEnsemble from sktime.classification.shapelet_based import MrSEQLClassifier from sktime.datasets import load_basic_motions from sktime.transformations.panel.compose import ColumnConcatenator 2.2 データロード …