tesseractでのOCR(横書きの資料 縦書きの資料)

目次 1. tesseractとは 2. Tesseractの特上 3. Tesseractの出力品質向上 4. tesseractの実験(コード) 4.1 横書きの資料 4.2 縦書きの資料 5. まとめ   1. tesseractとは Tesseractは、オープンソースの光学文字認識(OCR)エンジンであり、文字を含む画像データからテキストデータを抽出するために使用されます。Tesseractは、元々ヒューレット・パッカード(HP)研究所で開発され、その後Googleによって取得され、オープンソースプロジェクトとしてリリースされました。Tesseractは高い精度で様々な言語のテキストを認識でき、印刷されたテキストや手書きのテキスト、さまざまなフォントやスタイルのテキストなどを処理する能力を持っています。   2. Tesseractの特上 – オープンソース: Tesseractはオープンソースプロジェクトであり、誰でも無料で使用できる上に、カスタマイズや拡張も可能です。 – 多言語サポート: Tesseractは多くの言語をサポートし、さまざまなテキストの書体や表現を認識できます。 – 高度な画像処理: Tesseractは内部で画像処理アルゴリズムを使用して、画像の前処理を行います。これにより、劣悪な画像品質でも比較的良好なOCR結果を得ることができます。 – コマンドラインツールとライブラリ: Tesseractはコマンドラインツールとしても使用できるほか、ライブラリとして他のアプリケーションに統合することも可能です。 – 学習とカスタマイズ: Tesseractは一般的なフォントやスタイルに対する事前学習がされており、特定のフォントや言語に適応させることも可能です。 – 活発なコミュニティ: Tesseractは大規模なコミュニティに支えられており、新機能の追加やバグ修正が継続的に行われています。   3. Tesseractの出力品質向上 OCRの結果を向上させるために画像の改善が重要です。 リスケーリング、2値化、ノイズ除去、膨張、収縮などの操作を適用します。   リスケーリング: – 少なくとも300 DPIの画像を使用して最適な結果を得ます。 – 大文字の高さの最適なピクセル値が解像度に影響します。   2値化: – …

tesseractでのOCR(横書きの資料 縦書きの資料) Read More »

ChatGPTの紹介

ChatGPTは、OpenAIが開発した大規模言語モデルであり、日本語を含む複数の言語に対応しています。ChatGPTは、文章生成、文章の翻訳、文章の要約、文章の質問応答、文章の感情分析、文章の自動修正、文章の自動生成など、多様な言語タスクを実行できるように設計されています。ただし、日本語においては、日本語特有の文法や表現方法に対する理解が不十分なため、時には不自然な回答を生成する場合があります。

ThymeBoostの時系列予測

ThymeBoost は、時系列分解と勾配ブースティングを組み合わせて、予測のための柔軟な組み合わせ時系列フレームワークです。 時系列をトレンド成分、季節成分、変化点、外れ値に分解できます。 目次: ThymeBoostとは | ThymeBoostの実験 

Affinity-lossのクラスター分析

Affinity-lossは、単一の定式化で分類とクラスタリングを共同で実行するハイブリッド損失関数です。この手法は、ユークリッド空間の「親和性測定」に基づいて、次の利点があります。
(1) 分類境界に対する最大マージン制約の直接施行
(2) 等間隔で等距離のクラスター中心を確保するための扱いやすい方法
(3) 特徴空間での多様性と識別可能性をサポートするために、複数のクラス プロトタイプを学習する柔軟性。

leafmapの解説

Leafmapは、Jupyter notebook環境でローコードでインタラクティブなマッピングと地理空間分析を行うための無料でオープンソースのPythonパッケージです。目次:leafmapとは、主な機能、環境準備、実験

自動のデータ拡張(Auto Augment)の解説

データ拡張は、最新の画像分類器の精度を向上させるための効果的な手法です。この記事は自動のデータ拡張の進化についてまとめたいと思います。目次:AutoAugment、Fast AutoAugment、RandAugment、TrivialAugment

KDDCUP 2020 Debiasing概要

KDDCUP 2020 Debiasingは国際学術会議でレコメンデーションシステムの問題です。目次: 背景と目的、スケジュール、評価方法、賞金、データ、ランキング