ThymeBoostの時系列予測

ThymeBoost は、時系列分解と勾配ブースティングを組み合わせて、予測のための柔軟な組み合わせ時系列フレームワークです。 時系列をトレンド成分、季節成分、変化点、外れ値に分解できます。 目次: ThymeBoostとは | ThymeBoostの実験 

Affinity-lossのクラスター分析

Affinity-lossは、単一の定式化で分類とクラスタリングを共同で実行するハイブリッド損失関数です。この手法は、ユークリッド空間の「親和性測定」に基づいて、次の利点があります。
(1) 分類境界に対する最大マージン制約の直接施行
(2) 等間隔で等距離のクラスター中心を確保するための扱いやすい方法
(3) 特徴空間での多様性と識別可能性をサポートするために、複数のクラス プロトタイプを学習する柔軟性。

leafmapの解説

Leafmapは、Jupyter notebook環境でローコードでインタラクティブなマッピングと地理空間分析を行うための無料でオープンソースのPythonパッケージです。目次:leafmapとは、主な機能、環境準備、実験

自動のデータ拡張(Auto Augment)の解説

データ拡張は、最新の画像分類器の精度を向上させるための効果的な手法です。この記事は自動のデータ拡張の進化についてまとめたいと思います。目次:AutoAugment、Fast AutoAugment、RandAugment、TrivialAugment

KDDCUP 2020 Debiasing概要

KDDCUP 2020 Debiasingは国際学術会議でレコメンデーションシステムの問題です。目次: 背景と目的、スケジュール、評価方法、賞金、データ、ランキング

ProximalAdagradの最適化アルゴリズムの解説

PROXIMALADAGRAD最適化アルゴリズムとは、正則化項の最小化と引き換えに、最初のフェーズの結果に近接した状態を維持する瞬間的な最適化問題を解決できます。目次:概要、定義、実験(PROXIMALADAGRAD vs ADAM)

SPP-net(Spatial pyramid pooling)層の解説

SPP-netとは、可変サイズの画像を入力出来ように分類とオブジェクト検出のニューラルネットワークです。SPP-netは最後の畳み込み層の上にSPP層を追加する事が多いです。目次: SPP-netとは | 実験 | モデル評価

manifold.trustworthinessの解説

manifoldのtrustworthinessとは、多次元空間で二つのデータは似ているかどうか判断のモジュールです。目:manifoldの概要 | trustworthiness | 実験